Confidence bands for the logistic and probit regression models over intervals
Lucy Kerns
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 8, 3878-3890
Abstract:
This article presents methods for the construction of two-sided and one-sided simultaneous hyperbolic bands for the logistic and probit regression models when the predictor variable is restricted to a given interval. The bands are constructed based on the asymptotic properties of the maximum likelihood estimators. Past articles have considered building two-sided asymptotic confidence bands for the logistic model, such as Piegorsch and Casella (1988). However, the confidence bands given by Piegorsch and Casella are conservative under a single interval restriction, and it is shown in this article that their bands can be sharpened using the methods proposed here. Furthermore, no method has yet appeared in the literature for constructing one-sided confidence bands for the logistic model, and no work has been done for building confidence bands for the probit model, over a limited range of the predictor variable. This article provides methods for computing critical points in these areas.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1073319 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:8:p:3878-3890
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1073319
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().