EconPapers    
Economics at your fingertips  
 

Approximated non parametric confidence regions for the ratio of two percentiles

Li-Fei Huang

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 8, 4004-4015

Abstract: In the wood industry, it is common practice to compare in terms of the ratio of the same-strength properties for lumber of two different dimensions, grades, or species. Because United States lumber standards are given in terms of population fifth percentile, and strength problems arise from the weaker fifth percentile rather than the stronger mean, so the ratio should be expressed in terms of the fifth percentiles rather than the means of two strength distributions. Percentiles are estimated by order statistics. This paper assumes small samples to derive new non parametric methods such as percentile sign test and percentile Wilcoxon signed rank test, construct confidence intervals with covergage rate 1 – αx for single percentiles, and compute confidence regions for ratio of percentiles based on confidence intervals for single percentiles. Small 1 – αx is enough to obtain good coverage rates of confidence regions most of the time.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1076479 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:8:p:4004-4015

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1076479

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:8:p:4004-4015