EconPapers    
Economics at your fingertips  
 

Covariate selection for accelerated failure time data

Ujjwal Das and Nader Ebrahimi

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 8, 4051-4064

Abstract: Selection of appropriate predictors for right censored time to event data is very often encountered by the practitioners. We consider the ℓ1 penalized regression or “least absolute shrinkage and selection operator” as a tool for predictor selection in association with accelerated failure time model. The choice of the penalizing parameter λ is crucial to identify the correct set of covariates. In this paper, we propose an information theory-based method to choose λ under log-normal distribution. Furthermore, an efficient algorithm is discussed in the same context. The performance of the proposed λ and the algorithm is illustrated through simulation studies and a real data analysis. The convergence of the algorithm is also discussed.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1078475 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:8:p:4051-4064

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1078475

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:8:p:4051-4064