EconPapers    
Economics at your fingertips  
 

Robust adaptive Lasso for variable selection

Qi Zheng, Colin Gallagher and K. B. Kulasekera

Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 9, 4642-4659

Abstract: The adaptive least absolute shrinkage and selection operator (Lasso) and least absolute deviation (LAD)-Lasso are two attractive shrinkage methods for simultaneous variable selection and regression parameter estimation. While the adaptive Lasso is efficient for small magnitude errors, LAD-Lasso is robust against heavy-tailed errors and severe outliers. In this article, we consider a data-driven convex combination of these two modern procedures to produce a robust adaptive Lasso, which not only enjoys the oracle properties, but synthesizes the advantages of the adaptive Lasso and LAD-Lasso. It fully adapts to different error structures including the infinite variance case and automatically chooses the optimal weight to achieve both robustness and high efficiency. Extensive simulation studies demonstrate a good finite sample performance of the robust adaptive Lasso. Two data sets are analyzed to illustrate the practical use of the procedure.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1019138 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:9:p:4642-4659

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2015.1019138

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:46:y:2017:i:9:p:4642-4659