Statistical inference for heteroscedastic semi-varying coefficient EV models
Fanrong Zhao,
Weixing Song and
Jianhong Shi
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 10, 2432-2455
Abstract:
This paper proposes an estimation procedure for a class of semi-varying coefficient regression models when the covariates of the linear part are subject to measurement errors. Initial estimates for the regression and varying coefficients are first constructed by the profile least-squares procedure without input from heteroscedasticity, a bias-corrected kernel estimate for the variance function then is proposed, which in turn is used to define re-weighted bias-corrected estimates of the regression and varying coefficients. Large sample properties of the proposed estimates are thoroughly investigated. The finite-sample performance of the proposed estimates is assessed by an extensive simulation study and an application to the Boston housing data set. The simulation results show that the re-weighted bias-corrected estimates outperform the initial estimates and the naive estimates.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1242735 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:10:p:2432-2455
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2016.1242735
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().