EconPapers    
Economics at your fingertips  
 

Optimal designing of a new mixed variable lot-size chain sampling plan based on the process capability index

S. Balamurali

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 10, 2490-2503

Abstract: In this paper, a new mixed sampling plan based on the process capability index (PCI) Cpk is proposed and the resultant plan is called mixed variable lot-size chain sampling plan (ChSP). The proposed mixed plan comprises of both attribute and variables inspections. The variable lot-size sampling plan can be used for inspection of attribute quality characteristics and for the inspection of measurable quality characteristics, the variables ChSP based on PCI will be used. We have considered both symmetric and asymmetric fraction non conforming cases for the variables ChSP. Tables are developed for determining the optimal parameters of the proposed mixed plan based on two points on the operating characteristic (OC) approach. In order to construct the tables, the problem is formulated as a non linear programming where the average sample number function is considered as an objective function to be minimized and the lot acceptance probabilities at acceptable quality level and limiting quality level under the OC curve are considered as constraints. The practical implementation of the proposed mixed sampling plan is explained with an illustrative real time example. Advantages of the proposed sampling plan are also discussed in terms of comparison with other existing sampling plans.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1339089 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:10:p:2490-2503

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1339089

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:10:p:2490-2503