EconPapers    
Economics at your fingertips  
 

A methodology for quantifying the effect of missing data on decision quality in classification problems

Michael Feldman, Adir Even and Yisrael Parmet

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 11, 2643-2663

Abstract: Decision making is often supported by decision models. This study suggests that the negative impact of poor data quality (DQ) on decision making is often mediated by biased model estimation. To highlight this perspective, we develop an analytical framework that links three quality levels – data, model, and decision. The general framework is first developed at a high-level, and then extended further toward understanding the effect of incomplete datasets on Linear Discriminant Analysis (LDA) classifiers. The interplay between the three quality levels is evaluated analytically – initially for a one-dimensional case, and then for multiple dimensions. The impact is then further analyzed through several simulative experiments with artificial and real-world datasets. The experiment results support the analytical development and reveal nearly-exponential decline in the decision error as the completeness level increases. To conclude, we discuss the framework and the empirical findings, elaborate on the implications of our model on the data quality management, and the use of data for decision-models estimation.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1277752 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:11:p:2643-2663

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2016.1277752

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:11:p:2643-2663