A methodology for quantifying the effect of missing data on decision quality in classification problems
Michael Feldman,
Adir Even and
Yisrael Parmet
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 11, 2643-2663
Abstract:
Decision making is often supported by decision models. This study suggests that the negative impact of poor data quality (DQ) on decision making is often mediated by biased model estimation. To highlight this perspective, we develop an analytical framework that links three quality levels – data, model, and decision. The general framework is first developed at a high-level, and then extended further toward understanding the effect of incomplete datasets on Linear Discriminant Analysis (LDA) classifiers. The interplay between the three quality levels is evaluated analytically – initially for a one-dimensional case, and then for multiple dimensions. The impact is then further analyzed through several simulative experiments with artificial and real-world datasets. The experiment results support the analytical development and reveal nearly-exponential decline in the decision error as the completeness level increases. To conclude, we discuss the framework and the empirical findings, elaborate on the implications of our model on the data quality management, and the use of data for decision-models estimation.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2016.1277752 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:11:p:2643-2663
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2016.1277752
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().