A characteristic function-based approach to approximate maximum likelihood estimation
Marco Bee and
L. Trapin
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 13, 3138-3160
Abstract:
The choice of the summary statistics in approximate maximum likelihood is often a crucial issue. We develop a criterion for choosing the most effective summary statistic and then focus on the empirical characteristic function. In the iid setting, the approximating posterior distribution converges to the approximate distribution of the parameters conditional upon the empirical characteristic function. Simulation experiments suggest that the method is often preferable to numerical maximum likelihood. In a time-series framework, no optimality result can be proved, but the simulations indicate that the method is effective in small samples.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1348523 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:13:p:3138-3160
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1348523
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().