On the correspondence between frequentist and Bayesian tests
Ivair R. Silva
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 14, 3477-3487
Abstract:
Modern theory for statistical hypothesis testing can broadly be classified as Bayesian or frequentist. Unfortunately, one can reach divergent conclusions if Bayesian and frequentist approaches are applied in parallel to analyze the same data set. This is a serious impasse since there is a lack of consensus on when to use one approach in detriment of the other. However, this conflict can be resolved. The present paper shows the existence of a perfect equivalence between Bayesian and frequentist methods for testing. Hence, Bayesian and frequentist decision rules can always be calibrated, in both directions, in order to present concordant results.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1359296 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:14:p:3477-3487
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1359296
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().