A mixed GWMA–CUSUM control chart for monitoring the process mean
Rizwan Ali and
Abdul Haq
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 15, 3779-3801
Abstract:
The memory-type control charts are widely used in the process and service industries for monitoring the production processes. The reason is their sensitivity to quickly react against the small process disturbances. Recently, a new cumulative sum (CUSUM) chart has been proposed that uses the exponentially weighted moving average (EWMA) statistic, called the EWMA–CUSUM chart. Similarly, in order to further enhance the sensitivity of the EWMA–CUSUM chart, we propose a new CUSUM chart using the generally weighted moving average (GWMA) statistic, called the GWMA–CUSUM chart, for efficiently monitoring the process mean. The GWMA–CUSUM chart encompasses the existing CUSUM and EWMA–CUSUM charts. Extensive Monte Carlo simulations are used to explore the run length profiles of the GWMA–CUSUM chart. Based on comprehensive run length comparisons, it turns out that the GWMA–CUSUM chart performs substantially better than the CUSUM, EWMA, GWMA, and EWMA–CUSUM charts when detecting small shifts in the process mean. An illustrative example is also presented to explain the implementation and working of the EWMA–CUSUM and GWMA–CUSUM charts.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1361994 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:15:p:3779-3801
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1361994
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().