Estimation of regression vectors in linear mixed models with Dirichlet process random effects
Chen Li,
George Casella and
Malay Ghosh
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 16, 3935-3954
Abstract:
The Dirichlet process has been used extensively in Bayesian non parametric modeling, and has proven to be very useful. In particular, mixed models with Dirichlet process random effects have been used in modeling many types of data and can often outperform their normal random effect counterparts. Here we examine the linear mixed model with Dirichlet process random effects from a classical view, and derive the best linear unbiased estimator (BLUE) of the fixed effects. We are also able to calculate the resulting covariance matrix and find that the covariance is directly related to the precision parameter of the Dirichlet process, giving a new interpretation of this parameter. We also characterize the relationship between the BLUE and the ordinary least-squares (OLS) estimator and show how confidence intervals can be approximated.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1366519 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:16:p:3935-3954
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1366519
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().