Bayesian and frequentist prediction limits for the Poisson distribution
Valbona Bejleri and
Balgobin Nandram
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 17, 4254-4271
Abstract:
Prediction limits for Poisson distribution are useful in real life when predicting the occurrences of some phenomena, for example, the number of infections from a disease per year among school children, or the number of hospitalizations per year among patients with cardiovascular disease. In order to allocate the right resources and to estimate the associated cost, one would want to know the worst (i.e., an upper limit) and the best (i.e., the lower limit) scenarios. Under the Poisson distribution, we construct the optimal frequentist and Bayesian prediction limits, and assess frequentist properties of the Bayesian prediction limits. We show that Bayesian upper prediction limit derived from uniform prior distribution and Bayesian lower prediction limit derived from modified Jeffreys non informative prior coincide with their respective frequentist limits. This is not the case for the Bayesian lower prediction limit derived from a uniform prior and the Bayesian upper prediction limit derived from a modified Jeffreys prior distribution. Furthermore, it is shown that not all Bayesian prediction limits derived from a proper prior can be interpreted in a frequentist context. Using a counterexample, we state a sufficient condition and show that Bayesian prediction limits derived from proper priors satisfying our condition cannot be interpreted in a frequentist context. Analysis of simulated data and data on Atlantic tropical storm occurrences are presented.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1373814 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:17:p:4254-4271
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1373814
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().