Corrected likelihood-ratio tests in logistic regression using small-sample data
Ujjwal Das,
Subhra Sankar Dhar and
Vivek Pradhan
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 17, 4272-4285
Abstract:
Likelihood-ratio tests (LRTs) are often used for inferences on one or more logistic regression coefficients. Conventionally, for given parameters of interest, the nuisance parameters of the likelihood function are replaced by their maximum likelihood estimates. The new function created is called the profile likelihood function, and is used for inference from LRT. In small samples, LRT based on the profile likelihood does not follow χ2 distribution. Several corrections have been proposed to improve LRT when used with small-sample data. Additionally, complete or quasi-complete separation is a common geometric feature for small-sample binary data. In this article, for small-sample binary data, we have derived explicitly the correction factors of LRT for models with and without separation, and proposed an algorithm to construct confidence intervals. We have investigated the performances of different LRT corrections, and the corresponding confidence intervals through simulations. Based on the simulation results, we propose an empirical rule of thumb on the use of these methods. Our simulation findings are also supported by real-world data.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1373815 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:17:p:4272-4285
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1373815
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().