Weighted composite quantile regression method via empirical likelihood for non linear models
Yunxia Li and
Jiali Ding
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 17, 4286-4296
Abstract:
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1373816 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:17:p:4286-4296
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1373816
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().