Estimation of the shape parameter of a Pareto distribution
Yogesh Mani Tripathi,
Constantinos Petropoulos and
Mayank Jha
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 18, 4459-4468
Abstract:
We consider the problem of estimating the shape parameter of a Pareto distribution with unknown scale under an arbitrary strictly bowl-shaped loss function. Classes of estimators improving upon minimum risk equivariant estimator are derived by adopting Stein, Brown, and Kubokawa techniques. The classes of estimators are shown to include some known procedures such as Stein-type and Brewster and Zidek-type estimators from literature. We also provide risk plots of proposed estimators for illustration purpose.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1376088 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:18:p:4459-4468
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1376088
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().