Performance analysis of the preliminary test estimator with series of stochastic restrictions
M. H. Karbalaee,
M. Arashi and
S. M. M. Tabatabaey
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 1-17
Abstract:
In this paper, the problem of estimation of the regression coefficients in a multiple regression model is considered under the multicollinearity situation when there are series of stochastic linear restrictions available on the regression parameter vector. We have considered the preliminary test ridge regression estimators (PTRREs) based on the Wald, likelihood ratio, and lagrangian multiplier tests. Tables for the maximum and minimum guaranteed efficiency of the PTRREs are obtained, which allow us to determine the optimum choice of the level of significance corresponding to the optimum estimator. Some numerical results support the findings.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1300275 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:1-17
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1300275
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().