Statistic inference for a single-index ARCH-M model
Qiang Xiong,
Zhiyong Hu and
Yuan Li
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 102-117
Abstract:
For a single-index autoregressive conditional heteroscedastic (ARCH-M) model, estimators of the parametric and non parametric components are proposed by the profile likelihood method. The research results had shown that all the estimators have consistency and the parametric estimators have asymptotic normality. We extend this line of research by deriving the asymptotic normality of the non parametric estimator. Based on the asymptotic properties, we propose Wald statistic and generalized likelihood ratio statistic to investigate the testing problems for ARCH effect and goodness of fit, respectively. A simulation study is conducted to evaluate the finite-sample performance of the proposed estimation methodology and testing procedure.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1300283 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:102-117
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1300283
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().