EconPapers    
Economics at your fingertips  
 

Asymptotic distribution of regression correlation coefficient for Poisson regression model

Takeshi Kurosawa and Nobuhiro Suzuki

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 166-180

Abstract: This study treats an asymptotic distribution for measures of predictive power for generalized linear models (GLMs). We focus on the regression correlation coefficient (RCC) that is one of the measures of predictive power. The RCC, proposed by Zheng and Agresti is a population value and a generalization of the population value for the coefficient of determination. Therefore, the RCC is easy to interpret and familiar. Recently, Takahashi and Kurosawa provided an explicit form of the RCC and proposed a new RCC estimator for a Poisson regression model. They also showed the validity of the new estimator compared with other estimators. This study discusses the new statistical properties of the RCC for the Poisson regression model. Furthermore, we show an asymptotic normality of the RCC estimator.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1300285 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:166-180

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1300285

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:1:p:166-180