EconPapers    
Economics at your fingertips  
 

A relative error-based estimation with an increasing number of parameters

Hao Ding, Zhanfeng Wang and Yaohua Wu

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 196-209

Abstract: The least product relative error (LPRE) estimator and test statistic to test linear hypotheses of regression parameters in the multiplicative regression model are studied when the number of covariate variables increases with the sample size. Some properties of the LPRE estimator and test statistic are obtained such as consistency, Bahadur presentation, and asymptotic distributions. Furthermore, we extend the LPRE to a more general relative error criterion and provide their statistical properties. Numerical studies including simulations and two real examples show that the proposed estimation performs well.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1301474 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:196-209

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1301474

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:1:p:196-209