A relative error-based estimation with an increasing number of parameters
Hao Ding,
Zhanfeng Wang and
Yaohua Wu
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 196-209
Abstract:
The least product relative error (LPRE) estimator and test statistic to test linear hypotheses of regression parameters in the multiplicative regression model are studied when the number of covariate variables increases with the sample size. Some properties of the LPRE estimator and test statistic are obtained such as consistency, Bahadur presentation, and asymptotic distributions. Furthermore, we extend the LPRE to a more general relative error criterion and provide their statistical properties. Numerical studies including simulations and two real examples show that the proposed estimation performs well.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1301474 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:196-209
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1301474
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().