A novel spatial outlier detection technique
Alok Kumar Singh and
S. Lalitha
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 1, 247-257
Abstract:
Spatial outliers are spatially referenced objects whose non spatial attribute values are significantly different from the corresponding values in their spatial neighborhoods. In other words, a spatial outlier is a local instability or an extreme observation that deviates significantly in its spatial neighborhood, but possibly not be in the entire dataset. In this article, we have proposed a novel spatial outlier detection algorithm, location quotient (LQ) for multiple attributes spatial datasets, and compared its performance with the well-known mean and median algorithms for multiple attributes spatial datasets, in the literature. In particular, we have applied the mean, median, and LQ algorithms on a real dataset and on simulated spatial datasets of 13 different sizes to compare their performances. In addition, we have calculated area under the curve values in all the cases, which shows that our proposed algorithm is more powerful than the mean and median algorithms in almost all the considered cases and also plotted receiver operating characteristic curves in some cases.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1301477 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:1:p:247-257
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1301477
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().