EconPapers    
Economics at your fingertips  
 

Importance of sampling weights in multilevel modeling of international large-scale assessment data

Inga Laukaityte and Marie Wiberg

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 20, 4991-5012

Abstract: Multilevel modeling is an important tool for analyzing large-scale assessment data. However, the standard multilevel modeling will typically give biased results for such complex survey data. This bias can be eliminated by introducing design weights which must be used carefully as they can affect the results. The aim of this paper is to examine different approaches and to give recommendations concerning handling design weights in multilevel models when analyzing large-scale assessments such as TIMSS (The Trends in International Mathematics and Science Study). To achieve the goal of the paper, we examined real data from two countries and included a simulation study. The analyses in the empirical study showed that using no weights or only level 1 weights sometimes could lead to misleading conclusions. The simulation study only showed small differences in estimation of the weighted and unweighted models when informative design weights were used. The use of unscaled or not rescaled weights however caused significant differences in some parameter estimates.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1383429 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:20:p:4991-5012

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1383429

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:20:p:4991-5012