Seemingly unrelated regressions with covariance matrix of cross-equation ridge regression residuals
Zangin Zeebari,
B. M. Golam Kibria and
Ghazi Shukur
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 20, 5029-5053
Abstract:
Generalized least squares estimation of a system of seemingly unrelated regressions is usually a two-stage method: (1) estimation of cross-equation covariance matrix from ordinary least squares residuals for transforming data, and (2) application of least squares on transformed data. In presence of multicollinearity problem, conventionally ridge regression is applied at stage 2. We investigate the usage of ridge residuals at stage 1, and show analytically that the covariance matrix based on the least squares residuals does not always result in more efficient estimator. A simulation study and an application to a system of firms' gross investment support our finding.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1383431 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:20:p:5029-5053
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1383431
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().