Quantile regression estimation for distortion measurement error data
Jun Zhang,
Jiefei Wang,
Cuizhen Niu and
Ming Sun
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 20, 5107-5126
Abstract:
We study the quantile estimation methods for the distortion measurement error data when variables are unobserved and distorted with additive errors by some unknown functions of an observable confounding variable. After calibrating the error-prone variables, we propose the quantile regression estimation procedure and composite quantile estimation procedure. Asymptotic properties of the proposed estimators are established, and we also investigate the asymptotic relative efficiency compared with the least-squares estimator. Simulation studies are conducted to evaluate the performance of the proposed methods, and a real dataset is analyzed as an illustration.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1386319 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:20:p:5107-5126
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1386319
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().