EconPapers    
Economics at your fingertips  
 

A Bayesian analysis for the Wilcoxon signed-rank statistic

Richard A. Chechile

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 21, 5241-5254

Abstract: A Bayesian analysis is provided for the Wilcoxon signed-rank statistic (T+). The Bayesian analysis is based on a sign-bias parameter φ on the (0, 1) interval. For the case of a uniform prior probability distribution for φ and for small sample sizes (i.e., 6 ⩽ n ⩽ 25), values for the statistic T+ are computed that enable probabilistic statements about φ. For larger sample sizes, approximations are provided for the asymptotic likelihood function P(T+|φ) as well as for the posterior distribution P(φ|T+). Power analyses are examined both for properly specified Gaussian sampling and for misspecified non Gaussian models. The new Bayesian metric has high power efficiency in the range of 0.9–1 relative to a standard t test when there is Gaussian sampling. But if the sampling is from an unknown and misspecified distribution, then the new statistic still has high power; in some cases, the power can be higher than the t test (especially for probability mixtures and heavy-tailed distributions). The new Bayesian analysis is thus a useful and robust method for applications where the usual parametric assumptions are questionable. These properties further enable a way to do a generic Bayesian analysis for many non Gaussian distributions that currently lack a formal Bayesian model.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1388402 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:21:p:5241-5254

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1388402

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:21:p:5241-5254