EconPapers    
Economics at your fingertips  
 

Bayesian inference for double SARMA models

Ayman A. Amin

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 21, 5333-5345

Abstract: In this paper, we present a Bayesian analysis of double seasonal autoregressive moving average models. We first consider the problem of estimating unknown lagged errors in the moving average part using non linear least squares method, and then using natural conjugate and Jeffreys’ priors we approximate the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the proposed Bayesian methodology using simulation study, and apply to real-world hourly electricity load data sets.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1390132 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:21:p:5333-5345

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1390132

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:21:p:5333-5345