Bayesian inference for double SARMA models
Ayman A. Amin
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 21, 5333-5345
Abstract:
In this paper, we present a Bayesian analysis of double seasonal autoregressive moving average models. We first consider the problem of estimating unknown lagged errors in the moving average part using non linear least squares method, and then using natural conjugate and Jeffreys’ priors we approximate the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the proposed Bayesian methodology using simulation study, and apply to real-world hourly electricity load data sets.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1390132 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:21:p:5333-5345
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1390132
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().