Stochastic approximation results for variational inequality problem using random-type iterative schemes
Akaninyene Udo Udom
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 22, 5435-5444
Abstract:
Real world problems are embedded with uncertainties. Therefore, to tackle these problems, one must consider probabilistic nature of the problems both in modeling and solution. In this work, concepts of convergence of the solution of variational inequality in classical functional analysis are extended to a stochastic domain for a random Mann-type iterative and Ishikawa-type iterative schemes in a Banach space. A mean square convergence result is proved for this extension.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1395046 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:22:p:5435-5444
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1395046
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().