Outlier detection using difference-based variance estimators in multiple regression
Chun Gun Park and
Inyoung Kim
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 24, 5986-6001
Abstract:
In this article, we propose an outlier detection approach in a multiple regression model using the properties of a difference-based variance estimator. This type of a difference-based variance estimator was originally used to estimate error variance in a non parametric regression model without estimating a non parametric function. This article first employed a difference-based error variance estimator to study the outlier detection problem in a multiple regression model. Our approach uses the leave-one-out type method based on difference-based error variance. The existing outlier detection approaches using the leave-one-out approach are highly affected by other outliers, while ours is not because our approach does not use the regression coefficient estimator. We compared our approach with several existing methods using a simulation study, suggesting the outperformance of our approach. The advantages of our approach are demonstrated using a real data application. Our approach can be extended to the non parametric regression model for outlier detection.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1404101 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:24:p:5986-6001
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1404101
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().