Variable selection in heteroscedastic single-index quantile regression
Eliana Christou and
Michael G. Akritas
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 24, 6019-6033
Abstract:
We propose a new algorithm for simultaneous variable selection and parameter estimation for the single-index quantile regression (SIQR) model . The proposed algorithm, which is non iterative , consists of two steps. Step 1 performs an initial variable selection method. Step 2 uses the results of Step 1 to obtain better estimation of the conditional quantiles and , using them, to perform simultaneous variable selection and estimation of the parametric component of the SIQR model. It is shown that the initial variable selection method consistently estimates the relevant variables , and the estimated parametric component derived in Step 2 satisfies the oracle property.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1405271 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:24:p:6019-6033
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1405271
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().