EconPapers    
Economics at your fingertips  
 

Random spectral measure for non Gaussian moving averages

Anastassia Baxevani and Krzysztof Podgórski

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 2, 448-462

Abstract: We study the distribution of phases and amplitudes for the spectral representation of weighted moving averages of a general noise measure. The simple independent structure, known for the Gaussian case, and involving Rayleigh amplitude and uniform phase distributions, is lost for the non Gaussian noise case. We show that the amplitude/phase distributions exhibit a rich and more complex structure depending not just on the covariance of the process but specifically on the form of the kernel and the noise distribution. We present a theoretical tool for studying these distributions that follows from a proof of the spectral theorem that yields an explicit expression for the spectral measure. The main interest is in noise measures based on second-order Lévy motions since such measures are easily available through independent sampling. We approximate the spectral stochastic measure by independent noise increments which allows us to obtain amplitude/phase distributions that is of fundamental interest for analyzing processes in the frequency domain. For the purpose of approximating the moving average process through sums of trigonometric functions, we assess the mean square error of discretization of the spectral representation. For a specified accuracy, the approximation is explicitly given. We illustrate the method for the moving averages driven by the Laplace motion.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1303737 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:2:p:448-462

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1303737

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:2:p:448-462