Optimal generalized logistic estimator
Nagarajah Varathan and
Pushpakanthie Wijekoon
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 2, 463-474
Abstract:
In this paper, we propose a new efficient estimator namely Optimal Generalized Logistic Estimator (OGLE) for estimating the parameter in a logistic regression model when there exists multicollinearity among explanatory variables. Asymptotic properties of the proposed estimator are also derived. The performance of the proposed estimator over the other existing estimators in respect of Scalar Mean Square Error criterion is examined by conducting a Monte Carlo simulation.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1307406 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:2:p:463-474
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1307406
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().