Survival Weibull regression model for mismeasured outcomes
Magda C. Pires,
Enrico A. Colosimo and
Arlaine A. Silva
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 3, 601-614
Abstract:
In some survival studies, the exact time of the event of interest is unknown, but the event is known to have occurred during a particular period of time (interval-censored data). If the diagnostic tool used to detect the event of interest is not perfectly sensitive and specific, outcomes may be mismeasured; a healthy subject may be diagnosed as sick and a sick one may be diagnosed as healthy. In such cases, traditional survival analysis methods produce biased estimates for the time-to-failure distribution parameters (Paggiaro and Torelli 2004). In this context, we developed a parametric model that incorporates sensitivity and specificity into a grouped survival data analysis (a case of interval-censored data in which all subjects are tested at the same predetermined time points). Inferential aspects and properties of the methodology, such as the likelihood function and identifiability, are discussed in this article. Assuming known and non differential misclassification, Monte Carlo simulations showed that the proposed model performed well in the case of mismeasured outcomes; the estimates of the relative bias of the model were lower than those provided by the naive method that assumes perfect sensitivity and specificity. The proposed methodology is illustrated by a study related to mango tree lifetimes.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1309434 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:3:p:601-614
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1309434
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().