EconPapers    
Economics at your fingertips  
 

Determination of a new mixed variable lot-size multiple dependent state sampling plan based on the process capability index

S Balamurali, Muhammad Aslam and Ahmad Liaquat

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 3, 615-627

Abstract: This article proposes a new mixed variable lot-size multiple dependent state sampling plan in which the attribute sampling plan can be used in the first stage and the variables multiple dependent state sampling plan based on the process capability index will be used in the second stage for the inspection of measurable quality characteristics. The proposed mixed plan is developed for both symmetric and asymmetric fraction non conforming. The optimal plan parameters can be determined by considering the satisfaction levels of the producer and the consumer simultaneously at an acceptable quality level and a limiting quality level, respectively. The performance of the proposed plan over the mixed single sampling plan based on Cpk and the mixed variable lot size plan based on Cpk with respect to the average sample number is also investigated. Tables are constructed for easy selection of plan parameters for both symmetric and asymmetric fraction non conforming and real world examples are also given for the illustration and practical implementation of the proposed mixed variable lot-size plan.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1309435 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:3:p:615-627

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1309435

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:3:p:615-627