Confidence intervals for a two-parameter exponential distribution: One- and two-sample problems
K. Krishnamoorthy and
Yanping Xia
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 4, 935-952
Abstract:
The problems of interval estimating the mean, quantiles, and survival probability in a two-parameter exponential distribution are addressed. Distribution function of a pivotal quantity whose percentiles can be used to construct confidence limits for the mean and quantiles is derived. A simple approximate method of finding confidence intervals for the difference between two means and for the difference between two location parameters is also proposed. Monte Carlo evaluation studies indicate that the approximate confidence intervals are accurate even for small samples. The methods are illustrated using two examples.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1313983 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:4:p:935-952
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1313983
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().