EconPapers    
Economics at your fingertips  
 

General mathematical properties, regression and applications of the log-gamma-generated family

Gauss M. Cordeiro, Marcelo Bourguignon, Edwin M. M. Ortega and Thiago G. Ramires

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 5, 1050-1070

Abstract: The construction of some wider families of continuous distributions obtained recently has attracted applied statisticians due to the analytical facilities available for easy computation of special functions in programming software. We study some general mathematical properties of the log-gamma-generated (LGG) family defined by Amini, MirMostafaee, and Ahmadi (2014). It generalizes the gamma-generated class pioneered by Ristić and Balakrishnan (2012). We present some of its special models and derive explicit expressions for the ordinary and incomplete moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, Shannon entropy, Rényi entropy, reliability, and order statistics. Models in this family are compared with nested and non nested models. Further, we propose and study a new LGG family regression model. We demonstrate that the new regression model can be applied to censored data since it represents a parametric family of models and therefore can be used more effectively in the analysis of survival data. We prove that the proposed models can provide consistently better fits in some applications to real data sets.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1316403 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:5:p:1050-1070

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1316403

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:5:p:1050-1070