Bayesian analysis of head and neck cancer data using generalized inverse Lindley stress–strength reliability model
Vikas Kumar Sharma
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 5, 1155-1180
Abstract:
In this article, we present the analysis of head and neck cancer data using generalized inverse Lindley stress–strength reliability model. We propose Bayes estimators for estimating P(X > Y), when X and Y represent survival times of two groups of cancer patients observed under different therapies. The X and Y are assumed to be independent generalized inverse Lindley random variables with common shape parameter. Bayes estimators are obtained under the considerations of symmetric and asymmetric loss functions assuming independent gamma priors. Since posterior becomes complex and does not possess closed form expressions for Bayes estimators, Lindley’s approximation and Markov Chain Monte Carlo techniques are utilized for Bayesian computation. An extensive simulation experiment is carried out to compare the performances of Bayes estimators with the maximum likelihood estimators on the basis of simulated risks. Asymptotic, bootstrap, and Bayesian credible intervals are also computed for the P(X > Y).
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1316858 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:5:p:1155-1180
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1316858
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().