EconPapers    
Economics at your fingertips  
 

Adaptive LASSO for linear mixed model selection via profile log-likelihood

Juming Pan and Junfeng Shang

Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 8, 1882-1900

Abstract: Mixed model selection is quite important in statistical literature. To assist the mixed model selection, we employ the adaptive LASSO penalized term to propose a two-stage selection procedure for the purpose of choosing both the random and fixed effects. In the first stage, we utilize the penalized restricted profile log-likelihood to choose the random effects; in the second stage, after the random effects are determined, we apply the penalized profile log-likelihood to select the fixed effects. In each stage, the Newton–Raphson algorithm is performed to complete the parameter estimation. We prove that the proposed procedure is consistent and possesses the oracle properties. The simulations and a real data application are conducted for demonstrating the effectiveness of the proposed selection procedure.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1332219 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:8:p:1882-1900

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2017.1332219

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:47:y:2018:i:8:p:1882-1900