A self-normalizing approach to the specification test of mixed-frequency models
Henriette Groenvik and
Yeonwoo Rho
Communications in Statistics - Theory and Methods, 2018, vol. 47, issue 8, 1913-1922
Abstract:
In econometrics and finance, variables are collected at different frequencies. One straightforward regression model is to aggregate the higher frequency variable to match the lower frequency with a fixed weight function. However, aggregation with fixed weight functions may overlook useful information in the higher frequency variable. On the other hand, keeping all higher frequencies may result in overly complicated models. In literature, mixed data sampling (MIDAS) regression models have been proposed to balance between the two. In this article, a new model specification test is proposed that can help decide between the simple aggregation and the MIDAS model.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1332222 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:47:y:2018:i:8:p:1913-1922
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1332222
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().