A Bayesian approach for parameter estimation in multi-stage models
Hoa Pham,
Darfiana Nur,
Huong T. T. Pham and
Alan Branford
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 10, 2459-2482
Abstract:
Multi-stage time evolving models are common statistical models for biological systems, especially insect populations. In stage-duration distribution models, parameter estimation for the models use the Laplace transform method. This method involves assumptions such as known constant shapes, known constant rates or the same overall hazard rate for all stages. These assumptions are strong and restrictive. The main aim of this paper is to weaken these assumptions by using a Bayesian approach. In particular, a Metropolis-Hastings algorithm based on deterministic transformations is used to estimate parameters. We will use two models, one which has no hazard rates, and the other has stage-wise constant hazard rates. These methods are validated in simulation studies followed by a case study of cattle parasites. The results show that the proposed methods are able to estimate the parameters comparably well, as opposed to using the Laplace transform methods.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1465090 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:10:p:2459-2482
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1465090
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().