A bivariate geometric distribution allowing for positive or negative correlation
Alessandro Barbiero
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 11, 2842-2861
Abstract:
In this paper, we propose a new bivariate geometric model, derived by linking two univariate geometric distributions through a specific copula function, allowing for positive and negative correlations. Some properties of this joint distribution are presented and discussed, with particular reference to attainable correlations, conditional distributions, reliability concepts, and parameter estimation. A Monte Carlo simulation study empirically evaluates and compares the performance of the proposed estimators in terms of bias and standard error. Finally, in order to demonstrate its usefulness, the model is applied to a real data set.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1473428 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:11:p:2842-2861
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1473428
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().