Optimal stratification in stratified designs using weibull-distributed auxiliary information
Karuna G. Reddy and
M.G.M. Khan
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 12, 3136-3152
Abstract:
Sampling has evolved into a universally accepted approach for gathering information and data mining as it is widely accepted that a reasonably modest-sized sample can sufficiently characterize a much larger population. In stratified sampling designs, the whole population is divided into homogeneous strata in order to achieve higher precision in the estimation. This paper proposes an efficient method of constructing optimum stratum boundaries (OSB) and determining optimum sample size (OSS) for the survey variable. The survey variable may not be available in practice since the variable of interest is unavailable prior to conducting the survey. Thus, the method is based on the auxiliary variable which is usually readily available from past surveys. To illustrate the application as an example using a real data, the auxiliary variable considered for this problem follows Weibull distribution. The stratification problem is formulated as a Mathematical Programming Problem (MPP) that seeks minimization of the variance of the estimated population parameter under Neyman allocation. The solution procedure employs the dynamic programming technique, which results in substantial gains in the precision of the estimates of the population characteristics.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1473609 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:12:p:3136-3152
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1473609
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().