EconPapers    
Economics at your fingertips  
 

On bivariate discrete Weibull distribution

Debasis Kundu and Vahid Nekoukhou

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 14, 3464-3481

Abstract: Recently, Lee and Cha proposed two general classes of discrete bivariate distributions. They have discussed some general properties and some specific cases of their proposed distributions. In this paper we have considered one model, namely bivariate discrete Weibull distribution, which has not been considered in the literature yet. The proposed bivariate discrete Weibull distribution is a discrete analogue of the Marshall–Olkin bivariate Weibull distribution. We study various properties of the proposed distribution and discuss its interesting physical interpretations. The proposed model has four parameters, and because of that it is a very flexible distribution. The maximum likelihood estimators of the parameters cannot be obtained in closed forms, and we have proposed a very efficient nested EM algorithm which works quite well for discrete data. We have also proposed augmented Gibbs sampling procedure to compute Bayes estimates of the unknown parameters based on a very flexible set of priors. Two data sets have been analyzed to show how the proposed model and the method work in practice. We will see that the performances are quite satisfactory. Finally, we conclude the paper.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1476712 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3464-3481

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1476712

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3464-3481