EconPapers    
Economics at your fingertips  
 

Confidence intervals for the closed population size under inverse sampling without replacement

Mohammad Mohammadi

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 14, 3518-3529

Abstract: Inverse sampling is an appropriate design for the second phase of capture-recapture experiments which provides an exactly unbiased estimator of the population size. However, the sampling distribution of the resulting estimator tends to be highly right skewed for small recapture samples, so, the traditional Wald-type confidence intervals appear to be inappropriate. The objective of this paper is to study the performance of interval estimators for the population size under inverse recapture sampling without replacement. To this aim, we consider the Wald-type, the logarithmic transformation-based, the Wilson score, the likelihood ratio and the exact methods. Also, we propose some bootstrap confidence intervals for the population size, including the with-replacement bootstrap (BWR), the without replacement bootstrap (BWO), and the Rao–Wu’s rescaling method. A Monte Carlo simulation is employed to evaluate the performance of suggested methods in terms of the coverage probability, error rates and standardized average length. Our results show that the likelihood ratio and exact confidence intervals are preferred to other competitors, having the coverage probabilities close to the desired nominal level for any sample size, with more balanced error rate for exact method and shorter length for likelihood ratio method. It is notable that the BWO and Rao–Wu’s rescaling methods also may provide good intervals for some situations, however, those coverage probabilities are not invariant with respect to the population arguments, so one must be careful to use them.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1476718 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3518-3529

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1476718

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3518-3529