EconPapers    
Economics at your fingertips  
 

A simple root selection method for univariate finite normal mixture models

Supawadee Wichitchan, Weixin Yao and Guangren Yang

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 15, 3778-3794

Abstract: It is well known that there exist multiple roots of the likelihood equations for finite normal mixture models. Selecting a consistent root for finite normal mixture models has long been a challenging problem. Simply using the root with the largest likelihood will not work because of the spurious roots. In addition, the likelihood of normal mixture models with unequal variance is unbounded and thus its maximum likelihood estimate (MLE) is not well defined. In this paper, we propose a simple root selection method for univariate normal mixture models by incorporating the idea of goodness of fit test. Our new method inherits both the consistency properties of distance estimators and the efficiency of the MLE. The new method is simple to use and its computation can be easily done using existing R packages for mixture models. In addition, the proposed root selection method is very general and can be also applied to other univariate mixture models. We demonstrate the effectiveness of the proposed method and compare it with some other existing methods through simulation studies and a real data application.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1481972 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:15:p:3778-3794

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1481972

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:15:p:3778-3794