EconPapers    
Economics at your fingertips  
 

On simultaneous confidence intervals based on rank-estimates with application to analysis of gene expression data

Hossein Mansouri and Bo Li

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 17, 4339-4349

Abstract: Inferential methods based on ranks present robust and powerful alternative methodology for testing and estimation. In this article, two objectives are followed. First, develop a general method of simultaneous confidence intervals based on the rank estimates of the parameters of a general linear model and derive the asymptotic distribution of the pivotal quantity. Second, extend the method to high dimensional data such as gene expression data for which the usual large sample approximation does not apply. It is common in practice to use the asymptotic distribution to make inference for small samples. The empirical investigation in this article shows that for methods based on the rank-estimates, this approach does not produce a viable inference and should be avoided. A method based on the bootstrap is outlined and it is shown to provide a reliable and accurate method of constructing simultaneous confidence intervals based on rank estimates. In particular it is shown that commonly applied methods of normal or t-approximation are not satisfactory, particularly for large-scale inferences. Methods based on ranks are uniquely suitable for analysis of microarray gene expression data since they often involve large scale inferences based on small samples containing a large number of outliers and violate the assumption of normality. A real microarray data is analyzed using the rank-estimate simultaneous confidence intervals. Viability of the proposed method is assessed through a Monte Carlo simulation study under varied assumptions.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1494287 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:17:p:4339-4349

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1494287

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:17:p:4339-4349