Conditional Quantile Estimation for Truncated and Associated Data
Latifa Adjoudj and
Abdelkader Tatachak
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 18, 4598-4641
Abstract:
In survival or reliability studies, it is common to have data which are not only incomplete but weakly dependent too. Random truncation and censoring are two common forms of such data when they are neither independent nor strongly mixing but rather associated. The focus of this paper is on estimating conditional distribution and conditional quantile functions for randomly left truncated data satisfying association condition. We aim at deriving strong uniform consistency rates and asymptotic normality for the estimators and thereby, extend to association case some results stated under iid and α-mixing hypotheses. The performance of the quantile function estimator is evaluated on simulated data sets.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1498895 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:18:p:4598-4641
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1498895
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().