Identification of hidden Markov chains governing dependent credit-rating migrations
Dmitri Boreiko (),
S. Y. Kaniovski,
Y. M. Kaniovski and
G. Ch. Pflug
Authors registered in the RePEc Author Service: Yuri (Yuriy) Kaniovski (Kaniovskyi), ()
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 1, 75-87
Abstract:
Three models of dependent credit-rating migrations are considered. Each of them entails a coupling scheme and a discrete-time Markovian macroeconomic dynamics. Every credit-rating migration is modeled as a mixture of an idiosyncratic and a common component. The larger is the pool of debtors affected by the same common component, the stronger is the dependence among migrations. The distribution of the common component depends on macroeconomic conditions. At every time instant, the resulting allocation of debtors to credit classes and industries follows a mixture of multinomial distributions. Dealing with M non default credit classes, there are 2M theoretically possible macroeconomic outcomes. Only few of them occur with a positive probability. Restricting the macroeconomic dynamics to such outcomes simplifies estimation. A heuristics for identifying them is suggested. Using the maximum likelihood method, it was tested on a Standard and Poor's (S&P's) data set.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1342841 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:1:p:75-87
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1342841
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().