EconPapers    
Economics at your fingertips  
 

Analysis of an unreliable MX/G1G2/1/repeated service queue with delayed repair under randomized vacation policy

Chandi Ram Kalita and Gautam Choudhury

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 21, 5336-5369

Abstract: In this article we consider an unreliable MX/G/1 queue with two types of general heterogeneous service and optional repeated service subject to server’s break down and delayed repair under randomized vacation policy. We assume that customer arrive to the system according to a compound Poisson process. The server provides two types of general heterogeneous service and a customer can choose either type of service before its service start. After the completion of either type of service, the customer has the further option to repeat the same type of service once again. While the server is working with any types of service or repeated service, it may breakdown at any instant. Further the concept of randomized vacation is also introduced. For this model, we first derive the joint distribution of state of the server and queue size by considering both elapsed and remaining time, which is one of the objective of this article. Next, we derive Laplace Stieltjes transform of busy period distribution. Finally, we obtain some important performance measure and reliability indices of this model.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1513142 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:21:p:5336-5369

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1513142

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:21:p:5336-5369