A hybrid method to estimate the full parametric hazard model
Farag Hamad and
Nezamoddin N. Kachouie
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 22, 5477-5491
Abstract:
In this paper, we propose a hybrid method to estimate the baseline hazard for Cox proportional hazard model. In the proposed method, the nonparametric estimate of the survival function by Kaplan Meier, and the parametric estimate of the logistic function in the Cox proportional hazard by partial likelihood method are combined to estimate a parametric baseline hazard function. We compare the estimated baseline hazard using the proposed method and the Cox model. The results show that the estimated baseline hazard using hybrid method is improved in comparison with estimated baseline hazard using the Cox model. The performance of each method is measured based on the estimated parameters of the baseline distribution as well as goodness of fit of the model. We have used real data as well as simulation studies to compare performance of both methods. Monte Carlo simulations carried out in order to evaluate the performance of the proposed method. The results show that the proposed hybrid method provided better estimate of the baseline in comparison with the estimated values by the Cox model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1513149 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:22:p:5477-5491
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1513149
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().