Multiscale Gaussian convolution algorithm for estimate of Gaussian mixture model
Rui Xia,
Qiuyue Zhang and
Xiaoyan Deng
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 23, 5889-5910
Abstract:
This paper introduces a multiscale Gaussian convolution model of Gaussian mixture (MGC-GMM) via the convolution of the GMM and a multiscale Gaussian window function. It is found that the MGC-GMM is still a Gaussian mixture model, and its parameters can be mapped back to the parameters of the GMM. Meanwhile, the multiscale probability density function (MPDF) of the MGC-GMM can be viewed as the mathematical expectation of a random process induced by the Gaussian window function and the GMM, which can be directly estimated by the use of sample data. Based on the estimated MPDF, a novel algorithm denoted by the MGC is proposed for the selection of model and the parameter estimates of the GMM, where the component number and the means of the GMM are respectively determined by the number and the locations of the maximum points of the MPDF, and the numerical algorithms for the weight and variance parameters of the GMM are derived. The MGC is suitable for the GMM with diagonal covariance matrices. A MGC-EM algorithm is also presented for the generalized GMM, where the GMM is estimated using the EM algorithm by taking the estimates from the MGC as initial parameters of the GMM model. The proposed algorithms are tested via a series of simulated sample sets from the given GMM models, and the results show that the proposed algorithms can effectively estimate the GMM model.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1523431 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:23:p:5889-5910
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1523431
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().