Extended and updated tables for the Friedman rank test
Carlos López-Vázquez and
Esther Hochsztain
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 2, 268-281
Abstract:
The Friedman's test is used for assessing the independence of repeated experiments resulting in ranks, summarized as a table of integer entries ranging from 1 to k, with k columns and N rows. For its practical use, the hypothesis testing can be derived either from published tables with exact values for small k and N, or using an asymptotic analytical approximation valid for large N or large k. The quality of the approximation, measured as the relative difference of the true critical values with respect those arising from the asymptotic approximation is simply not known. The literature review shows cases where the wrong conclusion could have been drawn using it, although it may not be the only cause of opposite decisions. By Monte Carlo simulation we conclude that published tables do not cover a large enough set of (k, N) values to assure adequate accuracy. Our proposal is to systematically extend existing tables for k and N values, so that using the analytical approximation for values outside it will have less than a prescribed relative error. For illustration purposes some of the tables have been included in the paper, but the complete set is presented as a source code valid for Octave/Matlab/Scilab etc., and amenable to be ported to other programming languages.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1408829 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:2:p:268-281
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1408829
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().